
First, What is Flexbox?

When you're building a house, you need a blueprint. In the

same way, we need a blueprint when we're making websites.

And Flexbox is the blueprint.

The Flexbox model allows us to layout the content of our

website. Not only that, it helps us create the structures needed

for creating responsive websites for multiple devices.

Here's a demo which I created using Flexbox as the main

blueprint.

This project is a part of this article.

https://www.freecodecamp.org/news/learn-css-media-queries-by-building-projects/
https://www.freecodecamp.org/news/learn-css-media-queries-by-building-projects/

Flexbox Architecture
So how does Flexbox architecture work? The �ex-items

[Contents] are distributed along the main axis and cross axis.

And, depending on the �ex-direction property, the layout

position changes between rows and columns.

Flexbox Chart
This chart contains every possible property and value you can

use when you're working with Flexbox. You can reference it

while doing your projects and experiment with different values.

How to Set Up the Project

For this project, you need to know little bit of HTML, CSS, and

how to work with VS code. Follow along with me as we

complete the following tasks:

1. Create a folder named "Project-1" & Open VS Code

2. Create index.html and style.css �les

3. Install Live Server and run it.

Or, you can just open Codepen and start coding.

At the end of this tutorial, you will be able to make accurate and

beautiful website layouts.

HTML
In HTML, write these lines of code inside the body tag �

<div class="container">

<div class="box-1"> A </div>

<div class="box-2"> B </div>

<div class="box-3"> C </div>

</div>

CSS
Target the .container class and all the boxes. Then style the

boxes so that all of them look similar, like this: �

Note: don't forget to put the height of the container.

https://codepen.io/
https://codepen.io/

.container{

height : 100vh;

}

[class ^="box-"]{

width: 140px;

height: 140px;

background-color: skyblue;

border: 2px solid black;

// To view the letter better

font-size: 65px;

}

But Wait....

Before starting, you need to understand the relationship

between parent and child classes.

Flexbox works on the parent class, not on the child classes.

Here, the .container class is the parent and our .box-*

classes are our children.

So, apply the display: �ex inside the .container class. And

place the letters at the center of the box like this:

.container{

display : flex;

height : 100vh;

// To place some gap between boxes

gap : 25px;

}

[class ^="box-"]{

// Code from previous step are here

// Placing text at center

display : flex;

justify-content : center;

align-items : center;

}

And...we're all set! Let's start coding. ���

flex-direction property
This property allows us to set the direction and orientation in

which our �ex-items should be distributed inside the �ex-

container.

To recreate these results, let's write these lines in our CSS:

Please note that we'll write them inside the .container class.

.container{

//code from setup stage are here

// Change the value � here to see results

flex-direction : row;

}

justify-content property
This property arranges �ex-items along the MAIN AXIS inside

the �ex-container.

To recreate these results, write these lines in your CSS:

.container{

//code from setup stage are here

// Change the value � here to see results

justify-content: flex-start;

}

align-content property
This property arranges �ex-items along the CROSS AXIS inside

the �ex-container. This is similar to justify-content.

Please note that without the �ex-wrap property, this property

doesn't work. Here's a demo:

.container{

// Change the value � here to see results

align-content: center;

// without this line, align-content won't work

flex-wrap: wrap;

}

align-items property
This property distributes Flex-items along the Cross Axis.

To recreate these results, let's write the following code in CSS:

.container{

//code from setup stage are here

// Change the value � here to see results

align-items: flex-end;

}

align-self property
This property works on the child classes. It positions the

selected item along the Cross Axis.

In total we have 6 values:

• �ex-start

• �ex-end

• center

• baseline

• stretch

• auto

To recreate the results, select any .box-* and write the

following code:

.box-2{

// Change the value � here to see results

align-self : center;

}

Take a Break
So far so good. Take a break!

So far so good. Take a break!

flex - grow | shrink | wrap |
basis properties
The properties we'll discuss now will work when we resize the

window. Let's dive right in.

flex-grow
This property grows the size of a �ex-item based on the width

of the �ex-container.

flex-shrink
This property helps a �ex item shrink based on the width of the

�ex-container. It's the opposite of �ex-grow.

To achieve these results, follow me.

Please note that �ex-grow and �ex-shrink work on child

classes. So, we will target all our boxes like this:

.box-1{

flex-grow: 1;

}

.box-2{

flex-grow: 5;

}

.box-1{

flex-grow: 1;

}

Resize the window and you'll see the results.

To duplicate the result of �ex-shrink, write the following code:

Please note that you need to delete the �ex-wrap property

�rst, otherwise it won't work.

.box-1{

flex-shrink: 1;

}

.box-2{

flex-shrink: 5;

}

.box-1{

flex-shrink: 1;

}

Now, resize the window and you'll see the results.

flex-wrap
This property helps you set the number of �ex-items you want

in a line or row.

This works on the .container parent class. So, write the

following code:

.container{

 //other codes are here

// Change value � here to see results

flex-wrap : wrap;

flex-basis
This is similar to adding width to a �ex-item, but only more

�exible. �ex-basis: 10em, for example, will set the initial size of

a �ex-item to 10em. Its �nal size will be based on the available

space, �ex-grow, and �ex-shrink.

Shorthand Flexbox
Properties

flex shorthand
This is the shorthand for the �ex-grow, �ex-shrink and �ex-

basis properties combined.

You can try this by writing the following code:

Please note that it only works on the child classes:

.box-2{

flex : 2 1 30em;

}

flex-flow
This is the shorthand for the �ex-direction and �ex-wrap

properties:

You can try this by writing the following code:

Please note that it only works on the parent class.

.container{

flex-flow : row wrap;

}

place-content
This is the shorthand for the justify-content and align-content

properties:

Let's duplicate the results:

Please note that it works on the parent class.

.container{

place-content : center flex-end;

}

More Resources
If you want to exercise your Flexbox knowledge, you can read

this article of mine where you'll be building �ve responsive

layouts using Flexbox. Here's a demo:

https://www.freecodecamp.org/news/learn-flexbox-build-5-layouts/
https://www.freecodecamp.org/news/learn-flexbox-build-5-layouts/
https://www.freecodecamp.org/news/learn-flexbox-build-5-layouts/
https://www.freecodecamp.org/news/learn-flexbox-build-5-layouts/

Conclusion
Here's your medal for reading till the end �

