First, What is Flexbox?

What is
Flexbox?

When you're building a house, you need a blueprint. In the
same way, we need a blueprint when we're making websites.
And Flexbox is the blueprint.

The Flexbox model allows us to layout the content of our
website. Not only that, it helps us create the structures needed

for creating responsive websites for multiple devices.

Here's a demo which | created using Flexbox as the main
blueprint.

Miy(] Ruma Home Portfolio Contact

Wi

I'm Miya Ruma
A Designer From
Tokyo, Japan

o 8o 0

This project is a part of this article.

https://www.freecodecamp.org/news/learn-css-media-queries-by-building-projects/
https://www.freecodecamp.org/news/learn-css-media-queries-by-building-projects/

Flexbox Architecture

So how does Flexbox architecture work? The flex-items

[Contents] are distributed along the main axis and cross axis.

And, depending on the flex-direction property, the layout

position changes between rows and columns.

FlexBox Architecture

| Main Size |
— T ~— — — Cross-Start
Cross (’ ‘ 1 [T 1 Main Axis
size § [A [g R ?
Flex-item Flexqitem Flex-item
L \C J— — — Cross-End
: Flex-Container :
| . |
Main-Start Cross|Axis Main-End

WV

2 ()/ Joy Shaheb

Flexbox Chart

This chart contains every possible property and value you can

use when you're working with Flexbox. You can reference it

while doing your projects and experiment with different values.

Flex Box Chart

Property
#1 display
#2 flex-direction
#3 justify-content

#4 align-items
#5 align-content
#6 align-self

#7 Order

#8 flex-grow

#9 flex-shrink
#10flex-wrap

Value(s)
flex
row||columnl||column-reversel||row-reverse
flex-start || flex-end || center ||
space-between || space-around ||
space-evenly
flex-start || flex-end || center ||
stretch || baseline
flex-start || flex-end || center ||
stretchl||space-between||space-around
auto || flex-start || flex-end || center ||
baseline || stretch
/* Any positive Value */
[* Any positive Value */
[* Any positive Value */

nowrad wra wrap-reverse
P I P I P | Joy Shaheb

How to Set Up the Project

Let's Code
Together

For this project, you need to know little bit of HTML, CSS, and
how to work with VS code. Follow along with me as we
complete the following tasks:

1. Create afolder named "Project-1" & Open VS Code
2. Create index.html and style.css files

3. Install Live Server and run it.

Or, you can just open Codepen and start coding.

At the end of this tutorial, you will be able to make accurate and
beautiful website layouts.

HTML

In HTML, write these lines of code inside the body tag

<div class="container">
<div class="box-1"> A </div>
<div class="box-2"> B </div>
<div class="box-3"> C </div>
</div>

CSS

Target the .container class and all the boxes. Then style the
boxes so that all of them look similar, like this:

Note: don't forget to put the height of the container.

https://codepen.io/
https://codepen.io/

.container{
height : 100vh;

}

[class ~="box-"]{
width: 140px;
height: 140px;
background-color: skyblue;
border: 2px solid black;

// To view the letter better

font-size: 65px;

}

But Wait....

Walit a
Minute !

Before starting, you need to understand the relationship

between parent and child classes.

Flow

Container

Box

S

|| Parent

Box

Children

Flexbox works on the parent class, not on the child classes.

Here, the .container classisthe parent and our .box-*

classes are our children.

So, apply the display: flex inside the .container class. And
place the letters at the center of the box like this:

.container{
display : flex;
height : 100vh;

// To place some gap between boxes
gap : 25px;
}

[class ~="box-"]{

// Code from previous step are here

// Placing text at center
display : flex;
justify-content : center;
align-items : center;

}

And..we're all set! Let's start coding. ©

Grab Your
Coffee & Let's
start Coding

flex-direction property

This property allows us to set the direction and orientation in
which our flex-items should be distributed inside the flex-

container.

flex—-direction:

row — m ﬁ
row-reverse — (ﬁ {_AE}

column column-reverse

e

flex-direction %

mf‘

it

To recreate these results, let's write these lines in our CSS:

=z B3R

Please note that we'll write them inside the .container class.

.container{
//code from setup stage are here

// Change the value here to see results
flex-direction : row;

}

justify-content property

This property arranges flex-items along the MAIN AXIS inside
the flex-container.

justify-content

flex-start &}@ ﬁ
flex-end &I@ (ﬁ
center m ﬁ

justify-content

space-around {_L'lb
—

Half Equal Equal Half
space-evenly e ﬁ

—> —> —> —>

Equal Equal Equal Equal

To recreate these results, write these lines in your CSS:

.container{
//code from setup stage are here

// Change the value here to see results
justify-content: flex-start;

}

align-content property
This property arranges flex-items along the CROSS AXIS inside
the flex-container. This is similar to justify-content.

align-content

- - flex-end center
o 0
B

flex-start

align-content

space-between space-around

ol HalfJ
D G

L1 | Half P

stretch

Please note that without the flex-wrap property, this property
doesn't work. Here's a demo:

.container{

// Change the value here to see results
align-content: center;

// without this line, align-content won't work
flex-wrap: wrap;

}

align-items property

This property distributes Flex-items along the Cross Axis.

align-item

. . . flex-end
i] if=n
. (] . center

Illl ge

To recreate these results, let's write the following code in CSS:

flex-start

.container{

//code from setup stage are here

// Change the value here to see results

align-items: flex-end;

}

align-self property

This property works on the child classes. It positions the

selected item along the Cross Axis.

align-self

flex-start — -

In total we have 6 values:

o flex-start
o flex-end
e center
e baseline
o stretch

e auto

1

flex-end

To recreate the results, select any .box-* and write the

following code:

.box-2{

// Change the value here to see results

align-self : center;

}

Take a Break

So far so good. Take a break!

Take a
Break!

flex - grow | shrink | wrap |
basis properties

The properties we'll discuss now will work when we resize the

window. Let's dive right in.

flex-grow
This property grows the size of a flex-item based on the width
of the flex-container.

flex-shrink
This property helps a flex item shrink based on the width of the
flex-container. It's the opposite of flex-grow.

flex-grow

BN AN S - .
flex-shrink

To achieve these results, follow me.

Please note that flex-grow and flex-shrink work on child

classes. So, we will target all our boxes like this:

.box-1{
flex-grow: 1;

}
.box-2{
flex-grow: 5;

}
.box-1{
flex-grow: 1;

}

Resize the window and you'll see the results.
To duplicate the result of flex-shrink, write the following code:

Please note that you need to delete the flex-wrap property

first, otherwise it won't work.

.box-1{
flex-shrink: 1;

}
.box-2{
flex-shrink: 5;

}
.box-1{
flex-shrink: 1;

}

Now, resize the window and you'll see the results.

flex-wrap
This property helps you set the number of flex-items you want

in aline or row.

flex-wrap
oo [Bt
wrap wrap-reverse

@»/ W o
520 gy

This works on the .container parentclass. So, write the
following code:

.container{

//other codes are here

// Change value here to see results
flex-wrap : wrap;

flex-basis

This is similar to adding width to a flex-item, but only more
flexible. flex-basis: 10em, for example, will set the initial size of
a flex-item to 10em. Its final size will be based on the available
space, flex-grow, and flex-shrink.

Shorthand Flexbox
Properties

Time to Investigate
Flexbox Shorthands

© ¢ / Joy Shaheb

flex shorthand

This is the shorthand for the flex-grow, flex-shrink and flex-
basis properties combined.

flex-grow
X9 flex-basis

l /
flex: 2 1 30em;

1

flex-shrink

You can try this by writing the following code:

Please note that it only works on the child classes:

.box-2{
flex : 2 1 30em;
}

flex-flow
This is the shorthand for the flex-direction and flex-wrap
properties:

flex-wrap

l

flex-flow : row wrap;

1

flex-direction

You can try this by writing the following code:

Please note that it only works on the parent class.

.container{
flex-flow : row wrap;

}

place-content

This is the shorthand for the justify-content and align-content

properties:

justify-content

place-content : center flex-end;

1

align-content

Let's duplicate the results:

Please note that it works on the parent class.

.container{
place-content : center flex-end;

}

More Resources

If you want to exercise your Flexbox knowledge, you canread

this article of mine where you'll be building five responsive

layouts using Flexbox. Here's a demo:

https://www.freecodecamp.org/news/learn-flexbox-build-5-layouts/
https://www.freecodecamp.org/news/learn-flexbox-build-5-layouts/
https://www.freecodecamp.org/news/learn-flexbox-build-5-layouts/
https://www.freecodecamp.org/news/learn-flexbox-build-5-layouts/

B D E F

C G || H |
Mobile Desktop
Conclusion

Here's your medal for reading till the end @

